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We develop a comprehensive perturbation theory for the inhomogeneous, discrete one-dimensional nonlin-
ear Schro¨dinger equation based on the inverse scattering transform. We also discuss single-soliton dynamics
within the adiabatic approximation and derive higher order corrections to this approximation. Using this
perturbation theory, we study in detail the motion of a soliton interacting with a point impurity, either non-
dissipative or dissipative, in the presence of a spatially linear potential. We predict that there are two kinds of
dynamical localization of a soliton in the presence of the nondissipative impurity, depending on the impurity
strength. One is the usual dynamical localization, which is qualitatively the same as the one in the absence of
the impurity, and the other is the pinning of a soliton by an impurity of sufficient strength. The predictions of
these phenomena and their various dynamical properties are confirmed by numerical simulations of the full
system.@S1063-651X~96!03005-X#

PACS number~s!: 03.40.Kf. 63.20.Pw, 46.10.1z, 42.81.Dp

I. INTRODUCTION

The dynamics of discrete nonlinear Schro¨dinger systems
has become an important issue in studies of lattice dynamics
in condensed matter physics, molecular biology, fiber optics
@1,2#, etc. As a generalization of a simple tight-binding
Schrödinger model to a nonlinear case in the presence of an
external electric field, an inhomogeneous, discrete nonlinear
Schrödinger equation has been discussed@3–6# in which the
nonlinearity arises from interaction of quasiparticles with the
lattice ~as in the case of excitons in a molecular chain, or
electrons in polaronic settings! @3#. It is remarkable that this
discretenonlinear system preserves the Bloch oscillations,
and, furthermore, exhibits dynamical localization of wave
packets@3–6# as in the linear Schro¨dinger equation with an
external, spatially uniform field@7#. It is physically important
to realize that these phenomena are consequences of the dis-
creteness of the underlying physical systems of periodic
structures, such as in a semiconductor superlattice, an array
of coupled quantum wells, or a molecular chain.

In this work, we study effects of point impurities on the
dynamics of a discrete soliton in the presence of a spatially
linear potential for the above discrete nonlinear Schro¨dinger
system. In particular, we discuss the influence of the pres-
ence of the impurity on the phenomenon of dynamical local-
ization for a soliton. To achieve this goal, first we develop a
perturbation theory for inhomogeneous, discrete nonlinear
Schrödinger equations, based on the inverse scattering trans-
form ~IST!. Then, we focus on single-soliton dynamics, and
study various aspects of its motion within the adiabatic ap-
proximation and its higher order corrections. We predict that,
depending on the strength of the nondissipative impurities,

the dynamics of a soliton exhibits~i! the usual dynamical
localization, qualitatively the same as the one in the
impurity-free case, and~ii ! a trap situation in which the soli-
ton is pinned by an impurity of sufficient strength. In the
latter case, the soliton oscillates with a very small spatial
amplitude ~compared with the localization length of the
usual dynamical localization!, and is localized around a spa-
tial point which need not be the site of the impurity. Within
the adiabatic framework, we estimate the threshold strength
above which the pinning of a soliton occurs and the location
of the pinning, as well as the correction to the localization
length due to the impurity for the usual dynamical localiza-
tion. These predictions are confirmed by direct numerical
simulations of the full dynamical system. For completeness,
we also contrast these interesting phenomena induced by a
conserved impurity with those induced by a dissipative im-
purity, for which the total norm of the system is not con-
served. We also estimate analytically the change of the am-
plitude of a soliton after encountering the impurity for two
different settings: with or without a static ramp. As we will
see below, these theoretical estimates are in good agreement
with the numerical simulation results.

The paper is organized as follows: In Sec. II, we present
the IST based perturbation theory in detail. Then we study
the interaction of a soliton with nondissipative impurities in
Sec. III, and with dissipative impurities in Sec. IV. In Sec. V,
we conclude the paper.

II. PERTURBATION THEORY FOR INHOMOGENEOUS
DNLS EQUATION

The soliton dynamics we deal with is governed by the
one-dimensional differential-difference equation

i
dcn

dt
1~cn111cn21!~11ucnu2!22g~ t !ncn5kedn,0cn ,

~1!
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whereg(t) is an arbitrary real function of time, anddn0 is
the Kroneckerd function localized at the siten50. The posi-
tive parametere characterizes the strength of the impurities.
In a perturbative treatment, it is generally assumed that
e!1. Here k signifies the type of impurity:k521 and
k51, corresponding to attractive and repulsive impurities;
k56 i , corresponding to dissipative impurities since, in this
case, the normN 5(nln(11ucnu2) for system ~1! is no
longer conserved.

Model ~1! with e50 is exactly integrable by means of the
inverse scattering transform@3,8#. It is however more conve-
nient to work in terms of the renormalized function@4#,

qn~ t !5ei ~2n11!G~ t !cn~ t !, ~2!

where

G5E
0

t

g~ t8!dt8 ~3!

since the spectral parameter of the associated linear problem
is independent of time@see Eq.~6! below#. The renormalized
functionqn(t) satisfies the equation

i
dqn
dt

1~qn11e
22iG1qn21e

2iG!~11uqnu2!1g~ t !qn

5kedn,0qn . ~4!

As is shown in Ref.@9#, the unperturbed Eqs.~1! and~4! are
gauge equivalent.

Following the general ideas in Ref.@10#, we generalize
the IST based perturbation theory@11# for the Ablowitz-
Ladik ~AL ! model@12# in the following for the discrete non-
linear Schro¨dinger equation~DNLS! in the form:

i
dqn
dt

1~qn11e
22iG1qn21e

2iG!~11uqnu2!1g~ t !qn

5 i eRn~ t !, ~5!

whereRn(t) is a function ofn, t, with the boundary condi-
tions thatqn tends to zero sufficiently rapidly asunu→`.

A. Time dependence of the scattering data

As noted above, ife50 model~5! is integrable by means
of the inverse scattering technique. The associated linear
spectral problem,

Fn115UnFn ~6!

for the 232 matrix functionFn , is defined by the matrix

Un5S z iq̄n

iqn z21D , ~7!

wherez is a spectral parameter~hereafter the bar stands for
the complex conjugate!. The Jost solutionsT6(n;z) of the
system~6! are defined by the asymptotics,

T6~n;z!;S zn 0

0 z2nD asn→6`. ~8!

They are related by the transfer matrixT(z),

T2~n;z!5T1~n;z!T~z!. ~9!

The symmetry of the direct problem~6! implies that the
transfer matrix has the following form@12#:

T~z!5S a~z! 2b̄~z!

b~z! ā~z!
D , ~10!

where

a~z!5
1

D~n!
det@T2

~1!~n;z!,T1
~2!~n;z!# ~11!

with

D~n!5detT1~n;z!. ~12!

The notationT6
( j )(n;z) represents thej th column of the ma-

trix T6(n;z).
In order to treat perturbations we need the relation be-

tween variations of the transfer matrix and small changes of
Un(z). This is given by the formula

dT~z!5 (
k52`

`

T1
21~k11;z!dUk~z!T2~k;z!, ~13!

which results directly from Eqs.~6! and ~9!. In particular, it
follows from Eq.~13! that

]a

]qn
52

i

D~n11!
T1

~12!~n11;z!T2
~11!~n;z!, ~14a!

]a

]q̄n
5

i

D~n11!
T1

~22!~n11;z!T2
~21!~n;z!, ~14b!

]b

]qn
5

i

D~n11!
T1

~11!~n11;z!T2
~11!~n;z!, ~14c!

]b

]q̄n
52

i

D~n11!
T1

~21!~n11;z!T2
~21!~n;z!, ~14d!

where T6
(k j)(n;z) denotes the element of the matrix

T6(n;z) in the kth row andj th column.
The discrete spectrum of the problem~6! consists of zeros

zk of a(z) outside@or zerosz̃k5 z̄k
21 of ā(z) inside# the unit

circle @12# and can be parametrized as follows:

zk5ewk1 iuk, z̃k5e2wk1 iuk, ~15!

wherewk is positive,uk real, andk labels the zeros.
For zk in the discrete spectrum one has

T2
~1!~n;zk!5bkT1

~2!~n;zk!. ~16!

Taking into account this formula, the relationa(zk)50, and
Eq. ~13!, one calculates

]zk
]qn

5
ick

D~n11!
T1

~12!~n11;zk!T1
~12!~n;zk!, ~17a!
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]zk
]q̄n

52
ick

D~n11!
T1

~22!~n11;zk!T1
~22!~n;zk!, ~17b!

]bk
]qn

5
ibk

ȧ~zk!D~n11!
@ Ṫ2

~11!~n11;zk!T1
~12!~n;zk!

2Ṫ1
~12!~n11;zk!T2

~11!~n;zk!#, ~17c!

]bk
]q̄n

5
ibk

ȧ~zk!D~n11!
@ Ṫ1

~22!~n11;zk!T2
~21!~n;zk!

2Ṫ2
~21!~n11;zk!T1

~22!~n;zk!#, ~17d!

whereck5bk /ȧ(zk) and ḟ (zk)[d f(z)/dzuz5zk
.

Invoking a similar argument to the one in Ref.@10#, we
conclude that, ifFn is a function ofqn and q̄n , whereqn is
governed by the perturbed Eq.~5!, then the time dependence
of Fn is determined by

dFn

dt
5L̂Fn1e (

n52`

` S ]Fn

]qn
Rn1

]Fn

]q̄n
R̄nD , ~18!

where the operatorL̂ defines the same dependence onqn and
q̄ n as it would ate50. Using the results of Ref.@4# related
to the time dependence of the unperturbed scattering data
and lettingFn be one of the scattering data, one arrives at
the following set of equations:

]a

]t
5 i e (

n52`

`
1

D~n11!
@T1

~22!~n11;z!T2
~21!~n;z!R̄n2T1

~12!~n11;z!T2
~11!~n;z!Rn#, ~19!

]b

]t
5 ia~z,t !b1 i e (

n52`

`
1

D~n11!
@T1

~11!~n11;z!T2
~11!~n;z!Rn2T1

~21!~n11;z!T2
~21!~n;z!R̄n#, ~20!

dzk
dt

5 i e
1

ȧ~zk!
(

n52`

`
1

D~n11!
@T1

~12!~n11;zk!T2
~11!~n;zk!Rn2T1

~22!~n11;zk!T2
~21!~n;zk!R̄n#, ~21!

dbk
dt

5 ia~zk ,t !bk1 i e
bk

ȧ~zk!
(

n52`

`
1

D~n11!
$@ Ṫ2

~11!~n11;zk!T1
~12!~n;zk!2Ṫ1

~12!~n11;zk!T2
~11!~n;zk!#Rn

1@ Ṫ1
~22!~n11;zk!T2

~21!~n;zk!2Ṫ2
~21!~n11;zk!T1

~22!~n;zk!#R̄n%, ~22!

where

a~z,t !5z2e2iG1z22e22iG1g~ t !. ~23!

B. Adiabatic approximation

It can readily be seen that Eqs.~19!–~22! have a conve-
nient form for expansions with respect toe. In what follows,
we concentrate on one-soliton dynamics. The soliton of the
system~5! can be represented as

qn~ t !5q0~n,t !1eq1~n,t !, ~24!

where

q0~ t !52 i
sinh~2w!e22iu~n2z!1 in

cosh@2w~n2z!#
~25!

is the so-called adiabatic term~it coincides with the exact
one-soliton solution ate50 @8#! if one is only interested in
the time dependence of the parameters,w, z, u, n, while
keeping the functional form of the soliton~25! fixed. We
note that the parameters of the problem are linked by

b15z1e
2iuz12w~z11!1 in. ~26!

The Jost matrices of the one-soliton solution are given by

T2
~1!~n;z!5

zn

2cosh@2w~n212z!#

3S as~z!e2w~n212z!1e22w~n212z!

@12as~z!#ze22iu~n2z!1 in D , ~27a!

T1
~2!~n;z!5

z2n

2cosh@2w~n212z!#

3S @12e24was~z!#z21e2iu~n2z!2 in

e2w~n212z!1as~z!e22w~n112z! D , ~27b!

where

as~z!5
z22z1

2

z22 z̃ 1
2 ~28!

is the Jost coefficient of the one-soliton solution andz be-
longs to the unit circle.

As usual, the perturbation analysis implies expansion with
respect to the small parametere. Therefore to work in the
first order ofe it is sufficient to use the Jost functions and
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Jost coefficients associated with the unperturbed soliton solution. Then direct algebra leads to the reduction of the complex Eq.
~21! to two real ones,

dw

dt
52

e

2
sinh~2w! (

n52`

`
cosh@2w~n2z!#

cosh@2w~n112z!#cosh@2w~n212z!#
Rn9 , ~29!

du

dt
52

e

2
sinh~2w! (

n52`

`
sinh@2w~n2z!#

cosh@2w~n112z!#cosh@2w~n212z!#
Rn8 . ~30!

Here for the sake of convenience we introduce the notations,

Rn85 Re$Rn~ t !e
2iu~n2z!2 in%, ~31a!

Rn95 Im$Rn~ t !e
2iu~n2z!2 in%. ~31b!

From Eq.~22! other equations of the adiabatic approximation result, such as the time evolutions for the parametersz and
n

dz

dt
52

sinh~2w!

w
sin@2~G1u!#2

e

2

sinh~2w!

w (
n52`

`
~n2z!cosh@2w~n2z!#

cosh@2w~n112z!#cosh@2w~n212z!#
Rn9 , ~32!

dn

dt
5g12cosh~2w!cos@2~G1u!#12

u

w
sinh~2w!sin@2~G1u!#1

e

2 (
n52`

`
1

cosh@2w~n112z!#cosh@2w~n212z!#

3H 2cosh@2w~n112z!#Rn82~n112z!sinh~2w!sinh@2w~n2z!#Rn812
u

w
~n2z!sinh~2w!cosh@2w~n2z!#Rn9J .

~33!

In the case of the AL model, i.e.,g[G[0, Eqs.~29!, ~30!,
and ~32! reduce to those obtained in Ref.@11#.

C. First order approximation

In order to calculate the first order correctionq1(n,t) in-
troduced in Eq.~24! we recall the equations of the inverse
problem obtained by Ablowitz and Ladik@12#. Namely, the
‘‘potential’’ in the spectral problem@Eqs. ~6! and ~7!# is
reconstructed from the scattering data by the relation,

qn~ t !52 iK̄ ~n,n11;t !, ~34!

where the functionK(n,m;t) is found from

K~n,m;t !22F~n1m;t !14(
p50

`

(
q51

`

K~n,n12p11;t !

3F̄„2~n1p1q!11;t…F~n1m12q;t !50, ~35!

where

F~n;t !5F0~n;t !1F1~n;t !, ~36!

F0~n;t !52 c̄1z̃ 1
n11 , ~37!

F1~n;t !5
1

2p i RR
b̄~z;t !

ā~z;t !
zn21dz, ~38!

and the integral in Eq.~38! is performed along the right
portion of the unit circle~this is indicated by the indexR). In

the above representation we consider the perturbed dynamics
of one soliton only. This restriction implies also that
F1(n;t) is small compared withF0(n;t). Hence the solution
of Eq. ~35! can be found in the form~see Ref.@10# for the
calculation approach!

K~n,m;t !5K0~n,m;t !1dK~n,m;t !, ~39!

whereK0(n,m;t) is a ‘‘pure’’ soliton part anddK(n,m;t) is
a small correction. Naturally,

q0~n,t !52 iK̄ 0~n,n11;t !, eq1~n,t !52 idK~n,n11;t !.
~40!

Inserting Eq.~39! into Eq. ~35! and keeping the terms to the
first order ine, one arrives at the equation fordK(n,m;t),

dK~n,m;t !14(
p50

`

(
q51

`

dK~n,n12p11;t !F̄0„2~n1p1q!

11;t…F0~n1m12q;t !5B~n,m;t !, ~41!

where

B~n,m;t !52F1~n1m;t !24(
p50

`

(
q51

`

K0~n,n12p11;t !

3@ F̄1„2~n1p1q!11;t…F0~n1m12q;t !

1F̄0„2~n1p1q!11;t…F1~n1m12q;t !#.

~42!
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By direct substitution one can verify that Eq.~41! is solved by

dK~n,m;t !5B~n,m;t !1c1
e22w

sinh~2w!
K0~n,m;t ! (

p51

`

B~n,n12p21;t !z1
22~n1p! . ~43!

Hence with the help of Eqs.~25!, ~26!, ~28!, and ~40! we
obtain the representation

i eq1~n,t !5B̄~n,n11;t !1
sinh~2w!e22w~n2z11!

cosh@2w~n2z!#

3 (
p50

`

B̄~n,n1112p;t !e2ipu22pw. ~44!

To find the final expression forq1(n,t), we have to ex-
pressB(n,m;t) explicitly in terms of the perturbation func-

tion Rn . First, we notice that within the limit of the desired
accuracy,a(z) in Eq. ~38! can be replaced byas(z) defined
in Eq. ~28!. Furthermore, we have

T1
~1!~n;z!5

1

as~z!
T2

~1!~n;z!1O~e!. ~45!

Then, taking into account the explicit form of the Jost func-
tion ~27a!, we can reduce Eq.~20! to

]b

]t
5 ia~z,t !b12i

eas~z!e2w14iu

~z22z1
2!2 (

n52`

`
z2n11e22iu~n2z!1 in

cosh@2w~n2z11!#cosh@2w~n2z21!#
ˆ~Rn81 iRn9!$z2e22iucosh@2w~n2z!#

2cosh@2w~n2z11!#%$z2e22iucosh@2w~n2z21!#2cosh@2w~n2z!#%2sinh2~2w!~Rn82 iRn9!‰. ~46!

This equation can readily be solved forb. Via Eqs.~38! and~42!, one arrives at an explicit form of the first order correction
~not shown here because of its rather cumbersome form!.

III. INTERACTION OF A SOLITON
WITH NONDISSIPATIVE IMPURITIES

We have now assembled all necessary machinery to consider the interaction of a soliton with point impurities. Let us start
with the case of a single nondissipative impurityk561 placed at the siten50. In this case,Rn(t)52 ikdn,0qn , and the
equations of the adiabatic approximation reduce to

dw

dt
50, ~47!

du

dt
52

e

2
ksinh2~2w!

tanh@2wz#

cosh@2w~12z!#cosh@2w~11z!#
, ~48!

dz

dt
52

sinh~2w!

w
sin@2~G1u!#, ~49!

dn

dt
5g12cosh~2w!cos@2~G1u!#12

u

w
sinh~2w!sin@2~G1u!#2

e

2
k

sinh~2w!

cosh~2wz!cosh@2w~12z!#cosh@2w~11z!#

3$2cosh@2w~12z!#1~12z!sinh~2w!sinh~2wz!%. ~50!

As expected, evolutions of the parameters,w, z, u, are not
coupled to the evolution of the phasen, and n is merely
slaved to the dynamics of these parameters. Therefore we
only have to deal with Eqs.~48! and ~49! describing evolu-
tions of the angle parametersu and the centerz of the soliton
~according to the terminology adopted in Sec. II, they can be

regarded as collective coordinates of the soliton!. Note that
Eq. ~47! is a consequence of the conservation of the norm
@see Eq.~52! below#.

Before going into details, we point out that, when
Rn9[0, as in the case discussed above, the perturbed system
still has an integral of motion@3,15#
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N 5 (
n52`

`

ln~11uqnu2!, ~51!

which can be viewed as the norm of the system~1!, and we
have

(
n52`

`

ln~11uq0~n,t !u2!54w. ~52!

Another quantity,

C5 (
n52`

`

q̄n21qn , ~53!

which is an integral of motion of the unperturbed model,
now evolves in time according to the relation

dC

dt
5 i e (

n52`

`

~ q̄n21Rn1R̄n21qn!. ~54!

A. Interaction of an AL soliton with a point impurity

If g[G[0, the system under consideration reduces to the
AL model. This situation was studied in Ref.@15#. We de-
scribe it from the viewpoint of the IST perturbation theory
below.

It follows from Eqs.~48! and~49! that in leading order the
collective coordinate of the soliton solves the Newton equa-
tion

d2z

dt2
52cos~2u0!U8~z!, ~55!

whereU8(z)5dU(z)/dz, the ‘‘potential’’ U(z) is given by

U~z!5ek
sinh~2w!

2w
lnS 11

sinh2~2w!

cosh2~2wz! D , ~56!

andu0 is the initial value of the phaseu.

B. Interaction of a soliton with an impurity
in the presence of a constant field

The system of Eqs.~48! and~49! has two time scales: the
rapid, conventional timet defines the change ofz, and a
slow timeet is related to the variation of the angle variable
u. We exploit this fact below in the treatment of the per-
turbed soliton dynamics in the presence of a constant field
g5const andG[gt ~without loss of generality,g will be
assumed to be positive!. In the unperturbed case, i.e.,e50,
the motion of a soliton is periodic and is described by the
solution of Eq.~49! @5,6#,

z5
sinh~2w!

2gw
cos~2gt12u!1z1 , ~57!

where u5const andz1 is a constant related to the initial
position of the soliton.~It is interesting to mention here that
a dark soliton of the AL model also undergoes periodic mo-
tions in a linear field@14#.!

Following the general ideas of multiscale expansion~see,
e.g., Ref.@13#!, for the perturbed case we regardu andz1 as
functions of the slow time. Differentiating Eq.~57! with re-
spect tot and taking into account the fact that the temporal
dependence ofu is governed by Eq.~48!, we arrive at the
relation,

dz1
dt

5
sin~2gt12u!

4gw
U8~z!, ~58!

@U(z) is given by Eq.~56!#. Within the accepted accuracy,
O(e2), z1 is evaluated explicitly. Indeed, it follows from
Eqs.~49! and ~58! that

dz1
dz

52
U8~z!

4gsinh~2w!
. ~59!

Hence

z152
U~z!

4gsinh~2w!
1z1

~0! , ~60!

where z1
(0) is a constant determined through initial condi-

tions.
Since the motion is quasiperiodic it is natural to analyze

the shift of the center of the soliton oscillations averaged
over one periodT5p/g of the rapid motion. The shift is
defined by

Dz5z~ t1T!2z~ t !. ~61!

An explicit expression forDz results directly from Eq.
~49!,

Dz52
2sinh~2w!

w
sin@u~ t1T!2u~ t !#cos@2gt1u~ t1T!

1u~ t !#. ~62!

Then from Eq.~48! we find that the change ofu(t) during
one period is of the order ofe2. HenceDz5O(e2). For
similar arguments we can show that the change of the period
is also of orderO(e2).

It is not difficult to calculate the variation of the amplitude
of the oscillation. The change ofz during a half-period is
given by

Dz1/25
ke

8wg
ln
cosh@2w~zmin21!#cosh@2w~zmin11!#cosh2~2wzmax!

cosh@2w~zmax21!#cosh@2w~zmax11!#cosh2~2wzmin!
, ~63!
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where

Dz1/25E
zmin

zmax
dz15E

zmin

zmax
dz2zunperturbedU

zmin

zmax

, ~64!

wherezmin5z12sinh(2w)/(2gw), zmax5z11sinh(2w)/(2gw)
are the minimal and maximal values of the unperturbed soli-
ton trajectory, respectively. It is a direct consequence of this
result thatDz1/2.0 if kz1.0 andDz1/2,0 if kz1,0.

A striking property of Eqs.~48! and~49! of the adiabatic
approximation is that they allow for a trapped soliton solu-
tion. By trapping, we mean mathematically that the right-
hand side of Eq.~49! vanishes. This condition has two con-
sequences:~i! z5z05const, and~ii ! u52G(t). @Here we
temporarily return to the general case in whichg is an arbi-
trary function of time.# It follows from Eq. ~48! that these
two conditions are compatible only whenG(t)5gt, g5
const. Hence solitons cannot be trapped, in general, by the
impurity if the external field depends on time. However, for
a nonzero constantg, trapping can take place. Furthermore,
we note that, in contrast to the case considered in the previ-
ous subsection, now the positionz0 of the trapped soliton
does not coincide with the position of the point impurity.
Indeed, it is defined by the relation,

U8~z0!524gsinh~2w!, ~65!

which follows from Eqs.~48!, ~56! and the above require-
ment ~ii !.

To examine the stability of a soliton placed atz0 we rep-
resentz5z01j with uju!uz0u and deduce from Eqs.~48!
and ~49! an equation forj

d2j

dt2
1

1

2w
U9~z0!j50. ~66!

It can immediately be seen from Eq.~66! that the position
z0 is stable only ifU9(z0).0. This enables us to find a
threshold valuee th above which trapping occurs. Obviously,
such a threshold corresponds toU9(z0)50, wherez0 is con-
sidered as a function ofe determined by~65!. Direct calcu-
lation yields

e th5
g

A2sinh2~2w!

@112cosh~4w!1A514cosh~4w!#3/2

A514cosh~4w!21
,

~67!

and the value ofe th turns out to be the same for both the
attractive and the repulsive impurities. Fore,e th there is no
trapping for eitherk51 ork521. But the trapping scenario
is different for these two cases. Fork521, the trap position
z0→0 ase→` ~i.e., the center of the soliton tends to the
location of the impurity!. In generalz0P(0,z0,th), where
z0,th satisfies both Eq.~65! andU9(z0,th)50. In contrast, for
k51, the trap positionz0>z0,th ase increases frome th .

We have performed numerical simulations for the full dy-
namical system~1! of sufficiently large lattice sizes to avoid
any boundary effects. In numerical simulations, we used a
Simpson interpolation scheme to find the location of the
maximum of the modulusuqn(t)u as a function of timet.
More specifically, we first locate three greatest values,

uqm21(t)u, uqm(t)u, anduqm11(t)u, of the moduli, then inter-
polate parabolically these three points to find the position of
the maximum. The implementation of the interpolation en-
ables us to follow acontinuouschange~not limited to the
lattice spacing! of the locationz of the soliton despite the
fact that the dynamical system~1! is a lattice model. We
summarize our numerical simulation results as follows:

~a! For the case of a single site impurity withek520.1
localized atn50 in addition to a linear potential 2gn with
g50.015, a soliton,

q0~n,t !5sinh~2w!sech@2w~n2z!#e22iu~n2z!1 in, ~68!

initially localized at z50 with w50.5, andu50 evolves
with a perturbed trajectory. Figure 1 shows the trajectory
~thick line! of the soliton which is the locus of the interpo-
lated maximum ofuqn(t)u compared with the unperturbed
trajectory~thin line!. It clearly shows that the amplitude of
the oscillatory motion is modified by the presence of the
impurity, as is the oscillation frequency. We define the local-
ization lengthA as the distance between the left turning
points and the right turning points of an oscillatory trajectory
~see Fig. 1!. This is twice the amplitude of the oscillatory
motion. We numerically measured thatDA5Aperturbed
2Aunperturbed51.30 for ek520.1, DA521.64 for ek
50.1, respectively. From Eq.~63! the theoretical estimates
for the correction DA of the localization length are
Dz1/2561.46 for ek560.1. Therefore the theoretical esti-
mates and the numerical results agree with each other rather
well ~with a relative error of about 10%). We note that, in
order to measure this small correction in the change of the
amplitude, the impurity should be placed around the turning
points since the correctionDz1/2 decays exponentially with a
decay width of the order of 1/(2w) as the distance increases
between the impurity and one of the turning points.

~b! Next we discuss the phenomenon of trapping a soliton
by an impurity in the presence of a spatially linear potential.
First, we note that Eq.~65! in general has two solutions for

FIG. 1. Trajectories of a soliton@Eq. ~68!# with w50.5, u50
interacting with an impurityekd0,n localized atz50 in the pres-
ence of a ramp fieldVn50.03n. Thick line: ek520.1. For com-
parison, thin line:ek50, i.e., the unperturbed case. Dotted lines
indicate the positions of the turning points of the trajectories.~See
text for details.!
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z0 , and a soliton should be trapped at one of thez0’s at
which U9(z0).0. This is indeed the situation we observed
in simulations. For example, forek50.14, solitons~68! ini-
tially localized aroundz50.5;1 are trapped atz51.37.
Note that for the above parameters, the two solutions for
z0 of Eq. ~65! are z0

(1)50.4222 at whichU9(z0),0, and
z0
(2)51.353, at whichU9(z0).0, respectively. The theoreti-
cal estimate for the trap position again is in good agreement
with the numerical simulation. The relative error is less than
3%. Second, we performed simulations to verify the theo-
retical estimate of the trap threshold~67!. For w50.5 and
g50.015, the theoretical estimate ise th

theo50.103 54 with
z0560.8328 at whichU9(z0)50. In the simulations, a soli-
ton ~68! was initially centered at z050.8328 or
z0520.8328. For sufficiently strong impurities, it executed
a small oscillatory motion~see Fig. 2!. Numerically, we
found there was a thresholde th

exp50.1066 below which no
trapping was observed forz050.8328. The threshold for
z0520.8328 was numerically found to bee th

exp50.1013.
The thresholdse th

theo and e th
exp are within 3% relative error.

Thus the theoretical estimate and the numerical results for
the threshold are in excellent agreement.

~c! Finally, we point out that the trapping phenomenon is,
in general, complicated. When a soliton will be trapped de-
pends not only on the strength of the impurity, but also on its
location, and the radiation induced by soliton interaction
with the impurity. For example, in Fig. 3, we observe that a
soliton ofw50.5, u50, initially placed atz5156 collides
with the impurity 0.26dn,0 three times, accompanied by the
emission of radiation~not shown!, then it is finally trapped
near the impurity at the fourth encounter. In numerical simu-
lations, we recorded that the number of encounters before the
final trapping may not be monotonically increasing with the
decrease of the impurity strength. For instance, with the
above set of parameters, we have a trapped soliton after eight
encounters forke50.25 and after six encounters for
ke50.27 in contrast to the case shown in Fig. 3 which has
four encounters forke50.26.

IV. INTERACTION OF A SOLITON
WITH DISSIPATIVE IMPURITIES

In this section, we focus on the soliton dynamics affected
by the perturbationRn52 ikdn,0qn with an imaginaryk:
k56 i , corresponding to a dissipative impurity. The equa-
tions of the adiabatic approximation now take the form

dw

dt
52 i

ek

2

sinh2~2w!

cosh@2w~12z!#cosh@2w~11z!#
, ~69!

du

dt
50, ~70!

dz

dt
52

sinh~2w!

w
sin@2~G1u!#

1 i
ek

2w

sinh2~2w!z

cosh@2w~12z!#cosh@2w~11z!#
, ~71!

dn

dt
5g12cosh~2w!cos@2~G1u!#

12
u

w
sinh~2w!sin@2~G1u!#

2 i ek
u

w

sinh2~2w!z

cosh@2w~12z!#cosh@2w~11z!#
. ~72!

As in Sec. III, the dynamics ofn is slaved to other pa-
rameters, and we confine ourselves to Eqs.~69! and ~71! in
the following. We notice that in terms of new variables
u52wz, andv52w they can be rewritten as

dv
dt

5l
sinh2v

cosh~v2u!cosh~v1u!
, ~73!

du

dt
522sinhvsinx, ~74!

FIG. 2. Untrapped soliton vs soliton pinned by an impurity lo-
cated atz50 in the presence ofVn50.03n. Thick line shows the
trajectory of a trapped soliton executing small amplitude oscilla-
tions, hereek520.1036. Thin line is the trajectory of an un-
trapped soliton,ek520.1010. The soliton is initially located at
z520.8328 withw50.5, u50.

FIG. 3. Trajectory of a soliton withw50.5, u50, initially
placed atz5156, pinned by the impurity 0.26dn,0 after a number of
the usual large amplitude oscillations in the presence of the linear
potentialVn50.03n. The dashed line indicates the location of the
impurity.
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wherel52 i ek is a small real parameter andx52G12u
~here we have taken into account the fact thatu is a con-
stant!.

A. Interaction of an AL soliton with a dissipative impurity

If g[G[0, thenx52u5const and Eqs.~73! and ~74!
reduce to

dv
du

5
l

2sinx

sinhv
cosh~v2u!cosh~v1u!

. ~75!

A qualitative analysis of this equation gives rise to the fol-
lowing picture: The functionv vs u is continuously decreas-
ing ~increasing! if lsinx,0 (lsinx.0). At infinity
(u→6`) v tends to a constant. This means that the inter-
action of a soliton with the impurity leads to decreasing~in-
creasing! of the amplitude parameterw of the soliton if
k52 i (k5 i ). If we assume that the soliton comes from
z52` at t52` ~consequently, sinx,0), then the total
change of the amplitude parameterw, i.e., Dw5w(t5`)
2w(t52`) can be estimated as

Dw'22i ek
w

sin2ucosh2w
. ~76!

Here we have taken into account the fact thatl is a small
parameter and hence the changeDw is small ~i.e., it is as-
sumed thatuDwu!w). Evidently, Eq.~76! remains valid also
for a soliton moving from1` toward the impurity~that is,
when sinx.0). Notice that the total norm of the system com-
prising only one soliton is 4w @see Eq.~52!#. Using this
relation and assuming that the perturbed soliton retains the
solitonic functional form~68!, we can numerically estimate
the parameterw. Of course, this procedure should produce
an overestimate ofw because the total norm of the system
after the soliton passes the impurity consists of contributions
from the soliton and the radiation it generates. The radiation

constitutes the excess ofw in numerical measurements.
Bearing this in mind, we display in Fig. 4 the comparison
between the theoretical estimate~76! and the results of nu-
merical measurements. The discrepancy between theory and
simulation ranges from 8% of relative errors forw50.25 to
1% for w50.75. This constitutes strong agreement.

B. Interaction of a soliton with the dissipative impurity
in the presence of the constant field

Here we are concerned with the case of a static ramp field,
i.e., g(t)5g, a constant. Since an unperturbed soliton ex-
ecutes periodic oscillations, we look for the averaged change
of the characteristics during one period, as discussed above.
Starting with the unperturbed solution,

u5
1

g
sinhvcos~2gt12u!1u0 , ~77!

whereu052w0z0 , working within the first order ofe, and
taking into account the fact thatv changes slowly, we can
represent the variation of the parameterv0 ,
Dv05v0(t1T)2v0(t) during one period in the form of an
integral,

Dv052lsinh2vE
t

t1T dt

cosh~2v !1cosh~2u!
, ~78!

where one should substitute Eq.~77! into u, and regardv
andu0 as constants. The integral in Eq.~78! can be evaluated
trivially in the case of smallv, namely,v!1, andv!g, to
yield Dv5lTv2. This estimate is replaced by
Dv5lTtanh2v in the limit of a strong fieldg@sinhv. To
verify the theoretical estimate~78!, we numerically inte-
grated Eq.~78! and used the procedure mentioned above to
carry out measurements forDw in one oscillation of a soli-
ton. The solid line shown in Fig. 4 is the result from the
numerical integration of Eq.~78! ~note thatDw 5 Dv0/2,
andu052w0z050 for the case shown!, compared with the

FIG. 4. Change of the amplitude parameterw for solitons of the
initial profile @Eq. ~68!# with u50.85,z50 at t50, interacting with
a dissipative impuritykedn,0 , k5 i , e50.1. ~i! in the absence of a
static ramp, i.e.,g50, dashed line: the theoretical estimate@Eq.
~76!#; crosses: numerical simulation results.~ii ! in the presence of a
static ramp,g50.07, solid line: from the theoretical estimate~78!;
plus: numerical simulation results.~See text for details.!

FIG. 5. Trajectories of a soliton withw50.4375,u50.85 ini-
tially localized at z50 interacting with a dissipative impurity
kedn,0 in the presence of a linear potentialVn50.14n. Thick line:
ke50.1i . For comparison, thin line:ke50, i.e., the impurity-free
case.
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numerical measurements~pluses!. As expected, there is an
overestimate ofDw from the simulation. Clearly, the overall
agreement is excellent, with relative errors ranging from less
than 9% forw;0.25 to less than 0.2% forw;0.75. Figure
5 shows an example of the trajectories of solitons interacting
with a dissipative impurity. It exhibits a qualitatively differ-
ent behavior than the conservative case~cf. Fig. 1!. The cu-
mulative increase of the oscillation amplitude observed in
the figure is a result of the incremental increase of the am-
plitude parameterw ~for k5 i ) since qualitatively the oscil-
lation amplitude is proportional to sinh(2w)/w @see Eq.~57!#.

V. CONCLUSIONS

In this work, we have developed a comprehensive pertur-
bation theory for the inhomogeneous, discrete one-
dimensional nonlinear Schro¨dinger equation~1! based on the
inverse scattering transform. We have also discussed the

adiabatic approximation and higher order corrections to this
approximation for single-soliton dynamics. Using this for-
mulation, we have discussed in detail the motion of a soliton
interacting with a point impurity, either conservative or dis-
sipative, in the presence of a spatially linear potential. We
have predicted that there are two types of dynamical local-
ization for the nondissipative impurity case, one being the
usual dynamical localization, qualitatively the same as that in
the absence of the impurity, the other being the pinning of a
soliton by an impurity of sufficient strength. These predic-
tions are confirmed by direct numerical simulations per-
formed with the full dynamical system~1!. Various theoreti-
cal estimates made within the adiabatic approximation are
also shown to be in excellent agreement with numerical re-
sults.

Work at Los Alamos is performed under the auspices of
the U.S. D.O.E.
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