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We develop a comprehensive perturbation theory for the inhomogeneous, discrete one-dimensional nonlin-
ear Schrdinger equation based on the inverse scattering transform. We also discuss single-soliton dynamics
within the adiabatic approximation and derive higher order corrections to this approximation. Using this
perturbation theory, we study in detail the motion of a soliton interacting with a point impurity, either non-
dissipative or dissipative, in the presence of a spatially linear potential. We predict that there are two kinds of
dynamical localization of a soliton in the presence of the nondissipative impurity, depending on the impurity
strength. One is the usual dynamical localization, which is qualitatively the same as the one in the absence of
the impurity, and the other is the pinning of a soliton by an impurity of sufficient strength. The predictions of
these phenomena and their various dynamical properties are confirmed by numerical simulations of the full
system[S1063-651X96)03005-X

PACS numbg(s): 03.40.Kf. 63.20.Pw, 46.18.z, 42.81.Dp

I. INTRODUCTION the dynamics of a soliton exhibit§) the usual dynamical
localization, qualitatively the same as the one in the
The dynamics of discrete nonlinear Sctlirmyer systems impurity-free case, andli) a trap situation in which the soli-
has become an important issue in studies of lattice dynamid®n is pinned by an impurity of sufficient strength. In the
in condensed matter physics, molecular biology, fiber opticdatter case, the soliton oscillates with a very small spatial
[1,2], etc. As a generalization of a simple tight-binding @Mplitude (compared with the localization length of the
Schralinger model to a nonlinear case in the presence of afSual dynamical localizationand is localized around a spa-
external electric field, an inhomogeneous, discrete nonlinedfdl Point which need not be the site of the impurity. Within
Schrainger equation has been discus§d6] in which the the adiabatic framework, we estimate the threshold strength

nonlinearity arises from interaction of quasiparticles with theabove W.h'c.h the pinning of a soliton oceurs and the cha§|on
of the pinning, as well as the correction to the localization

lattice (as in the case of excitons in a molecular chain, orIen th due 1o the impurity for the usual dvnamical localiza-
electrons in polaronic settingg3]. It is remarkable that this 9 mpurity ' yna )
tion. These predictions are confirmed by direct numerical

discretenonlinear system preserves the Bloch oscnlatlons,simulations of the full dynamical system. For completeness,

and, furthermore, exhibits dynamical localization of wave, . 2iso contrast these interesting phenomena induced by a

packets3—6] as in the linear Schringer equation with an . \sarved impurity with those induced by a dissipative im-
external, spatially uniform fielff7]. It is physically important ourity, for which the total norm of the system is not con-

to realize that these phenomena are consequences of the digyyed. We also estimate analytically the change of the am-

creteness of the underlying physical systems of periodigyitude of a soliton after encountering the impurity for two

structures, such as in a semiconductor superlattice, an arrgjffferent settings: with or without a static ramp. As we will

of coupled quantum wells, or a molecular chain. see below, these theoretical estimates are in good agreement
In this work, we study effects of point impurities on the with the numerical simulation results.

dynamics of a discrete soliton in the presence of a spatially The paper is organized as follows: In Sec. Il, we present

linear potential for the above discrete nonlinear Sdimger  the IST based perturbation theory in detail. Then we study

system. In particular, we discuss the influence of the presthe interaction of a soliton with nondissipative impurities in

ence of the impurity on the phenomenon of dynamical local-Sec. 11, and with dissipative impurities in Sec. IV. In Sec. V,

ization for a soliton. To achieve this goal, first we develop awe conclude the paper.

perturbation theory for inhomogeneous, discrete nonlinear

Schralinger equations, based on the inverse scattering transy pERTURBATION THEORY FOR INHOMOGENEOUS

form (IST). Then, we focus on single-soliton dynamics, and DNLS EQUATION

study various aspects of its motion within the adiabatic ap-

proximation and its higher order corrections. We predict that, The soliton dynamics we deal with is governed by the

depending on the strength of the nondissipative impuritiespne-dimensional differential-difference equation

di,
* . i——+ + 1) (1+ ]|l — =
Also at Centro de Ciecias Matem#cas, Universidade da Ma- I dt (Y2 Pin-2) (L4 [l 5) = 27(O)Nhn = k€dn ofin,
deira, Praa do Municpio, 9000 Funchal, Portugal. (1)
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where y(t) is an arbitrary real function of time, anél,; is  They are related by the transfer matfixz),
the Kroneckes function localized at the site=0. The posi-
tive parametek characterizes the strength of the impurities. T_(N;2)=T4(n;2)T(2). ©

In a perturbative treatment, it is generally assumed thaJi_ . L
. P ; e he symmetry of the direct problert6) implies that the
e<1. Here k signifies the type of impurityx 1 and transfer matrix has the following forfi.2]:

k=1, corresponding to attractive and repulsive impurities;

x=*1i, corresponding to dissipative impurities since, in this a(z) —b_(z)
case, the norm/ =3 In(1+|y?) for system (1) is no T(z :( — ) (10
longer conserved. b(z) a(z)
Model (1) with e=0 is exactly integrable by means of the h
inverse scattering transfor[8,8]. It is however more conve- WN€re
nient to work in terms of the renormalized functip4i, 1
— 1) 1n- (2)(1n-
q (t)=ei(2”+1)r(t)d/ (t) (2) a(z)— A(I’])de[T_ (n,z),T+ (n,z)] (11)
n n ’
where with
A(n)=defl,(n;2). (12

t
T=f07(t')dt’ )

The notationT{)(n;z) represents th¢th column of the ma-

since the spectral parameter of the associated linear probleffi T=(n:2).

is independent of timfsee Eq(6) below]. The renormalized In orde_r to treat perturbations we need the relation be-
function q,(t) satisfies the equation tween variations of the transfer matrix and small changes of

U,(2). This is given by the formula

dq o .
i (Anrae "+ a1 (L[l + ¥(Day

oT(z)= kZ T;l(k+ 1;2)6U(2)T_(k;2), (13

= Kf5n,0Qn . (4)
] ] which results directly from Eqg6) and (9). In particular, it
As is shown in Ref[9], the unperturbed Eqsl) and(4) are  follows from Eq.(13) that

gauge equivalent.
Following the general ideas in Rdf10], we generalize da i (12 (11)

the IST based perturbation theofg1] for the Ablowitz- ﬁ=_m1—+ (n+1;2)T7(njz), (144

Ladik (AL) model[12] in the following for the discrete non-

linear Schrdinger equatioDNLS) in the form:

Ja i
— (22) . (2D n-
da, . o , _&a —A(n+1)T* (n+1;2)T*(n;2), (14b
I dt +(dny1€ +Qn-1€ )(1+|Qn| )+y(Hd,
db i
. — (11) . 1Y)/ -
=ieR,(1), (5) £ —A(n+1)T+ (n+1;2)T="(n;2), (140
whereR,(t) is a function ofn, t, with the boundary condi- b i

tions thatq,, tends to zero sufficiently rapidly da|—o. T n+1:2T®(n;z), (149

an A(n+1)

A. Time dependence of the scattering data i .
P g where T®)(n;z) denotes the element of the matrix

As noted above, iE=0 model(5) is integrable by means T.(n;z) in thekth row andjth column.
of the inverse scattering technique. The associated linear The discrete spectrum of the probléf) consists of zeros
spectral problem, z of a(2) outside[or zerosz,=z, ! of a(2) inside] the unit
circle [12] and can be parametrized as follows:

Fre1=UpFy (6)
— AW tif S — a—Wtif
for the 2x 2 matrix functionF,,, is defined by the matrix Z=eN ge=e T (15)
z o wherew, is positive, 6, real, andk labels the zeros.
U,= ( '1) 7 For z, in the discrete spectrum one has
i, z~
T (n;z)=b, T?(n;z). (16)

wherez is a spectral parametéhnereafter the bar stands for
the complex conjugaje The Jost solutiond ..(n;z) of the  Taking into account this formula, the relatierz,) =0, and

system(6) are defined by the asymptotics, Eqg. (13), one calculates
2" 0 9z, iCy
T+(n;z)~( 0 Z—n) asn— o, €S) £=mTilz)(nﬂLl;Zk)sz)(niZk), (173
n
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9z _ ick (22) . (22)( s -
a_n_ A(n+1)T+ (n+1azk)T+ (n,Zk), (17b)
b ib .
T X [TM(n11;2)T 2 (n;z)
99n  a(z)A(n+1)
~ T3 (n+1;20T™(n; 207, (170
db ib .
=k:-—k[sz)(nﬁLl;Zk)T(,zD(n;zk)
9qn  a(z)A(n+1)
~T®(n+Lz0 T (n;20], (17d

wherec, = by /a(z,) andf(z)=d f(z)/dle:Zk.

Ja
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Invoking a similar argument to the one in RgL0], we
conclude that, if®,, is a function ofg,, andq,, whereq,, is
governed by the perturbed E¢p), then the time dependence
of ®,, is determined by

o]

do, -
ot =Ld,+ en;x

oD, ob,—
R,+ —R,
90 Jqn

. (19

where the operatd} defines the same dependenceggrand

g, as it would ate=0. Using the results of Ref4] related

to the time dependence of the unperturbed scattering data
and letting®,, be one of the scattering data, one arrives at
the following set of equations:

a1 2 ST L TE (MR- T (n+ 12T (nj2)R,), (19
b i H S (11 (11) (21) (21 D
E:'“(Z’t)bﬂen?w m[n (n+1;2TH(n; 2R, - T (n+1;2T*(n;2)R,], (20)
de i 1 . (12 (11 (22 (21 D
Tt €Ay o Anrp L (MHERITE 2R T TN L2 T 20 Rl @)
k =—0oC
%:ia(z t)b tie bk 2 {[T(ll)(n+1z )T(12)(n.z )_T(lz)(n+ 1:7 )T(ll)(n.z )]R
dt kL) Bk a(z) n A(n+1) = ) Ly 1 Zk ¥ ) 1 E 1Zk) IRn
+[TP(n+ 1,20 T (n;2) — T (n+1;2) T (n;20 IR}, (22)

where The Jost matrices of the one-soliton solution are given by
z,t) =724+ 772721 4 y(1). 23 z"
a(zt) y(t) (23) T(})(n;z):
2cosh2w(n—1-{¢)]
B. Adiabatic approximation as(z)ezw(”_l_o-ke_ 2w(n—1-¢)
It can readily be seen that Eq4d.9)—(22) have a conve- [1-ay(z)]ze 2i0n-0+iv ) (279
nient form for expansions with respectdoIn what follows, S
we concentrate on one-soliton dynamics. The soliton of the SN
system(5) can be represented as T@(n;z)=
A 2cosh2w(n—1-¢)]
an(t) =do(n,t) + €qa(n,t), (24) [1— e Wa (z)]z 162 A=D1
where e2Wn-1-04 g (z)e 2W(N+1-0) | (27b)
(=i sinh(2w)e~210n=o+iv - where
=—i
Yo cosii2zw(n—{¢)] ,
is the so-called adiabatic terit coincides with the exact 3s(2)= 22—371 (

one-soliton solution ag=0 [8]) if one is only interested in
the time dependence of the parametavs,l, 6, v, while

keeping the functional form of the solito{25) fixed. We

note that the parameters of the problem are linked by

2i00+2w({+1) +iv

bl = Zle (26)

is the Jost coefficient of the one-soliton solution anble-
longs to the unit circle.

As usual, the perturbation analysis implies expansion with
respect to the small parameter Therefore to work in the
first order ofe it is sufficient to use the Jost functions and
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Jost coefficients associated with the unperturbed soliton solution. Then direct algebra leads to the reduction of the complex Eg.
(21) to two real ones,

dw e ~ costi2w(n—¢)] y
dt Esmf(Zw)n:E_w cosii2w(n+1—¢)]cosi2w(n—1—¢)] Rn: 29
do e - sinf2w(n—{¢)] ,
dt Esmr(ZW)n:E_x coshi2w(n+1—¢)]cosii2w(n—1—¢)] Rn (30

Here for the sake of convenience we introduce the notations,
R;= Re[R,(t)e? =017}, (313
Rh= Im{Ry(t)e? "= 01}, (31b

From Eg.(22) other equations of the adiabatic approximation result, such as the time evolutions for the pardraaters
14

dZ  sinh(2w) e sinh(2w) (n—¢)cosh2w(n—¢)] ,

Gt Tw e+ ol- s —g N cosr[2w(n+1—§)]cosr[2w(n—1—§)]R“’ 32
dV_ 0 . € i 1
T v+ 2cost2w)cog 2(I" + 0)]+2Wsml"(2w)5|r{2(l“+ 0)]+ En:_m costizw(n+1—¢)Jcosh2w(n—1—¢)]

X1 2coshi2w(n+1—¢)]R;—(n+1—¢)sinh(2w)sinH 2w(n— )R/ + ZV—?I(n—g)sinr(ZW)cosr[ZW(n—g’)]R;; .

(33

In the case of the AL model, i.e3=I"=0, Egs.(29), (30), the above representation we consider the perturbed dynamics

and(32) reduce to those obtained in R¢L1]. of one soliton only. This restriction implies also that
F1(n;t) is small compared witlr5(n;t). Hence the solution
C. First order approximation of Eq. (35 can be found in the forntsee Ref[10] for the

' . . calculation approagh
In order to calculate the first order correctigp(n,t) in- pproag

troduced in Eq(24) we recall the equations of the inverse K(n,m;t)=Kgy(n,m;t)+ sK(n,m:t), (39
problem obtained by Ablowitz and Lad{k2]. Namely, the

“potential” in the spectral problen{Egs. (6) and (7)] is  whereKy(n,m;t) is a “pure” soliton part andsK(n,m;t) is
reconstructed from the scattering data by the relation, a small correction. Naturally,

qn(t)=—iK_(n,n+1;t), (39 qo(n,t)=—iK_0(n,n+1;t), eqqy(n,t)=—i8K(n,n+1:t).
(40)
where the functiork (n,m;t) is found from
Inserting Eq.(39) into Eq. (35) and keeping the terms to the
first order ine, one arrives at the equation féK(n,m;t),

o] [’

K(n,m:t)—2F(n+m;t)+4>, > K(n,n+2p+1:t)
p=0g=1

o o0

SK(n,m)+4> > SK(n,n+2p+1:t)Fo(2(n+p+q)

XF@(n+p+q)+1;)F(n+m+2q;t)=0, (35 = &
where +1;t)Fo(n+m+2q;t)=B(n,m;t), (41
F(nt)=Fo(n;t)+F(n;t), (360  where
Fo(nit)=—c,z0" 1, (37 oz
° o B(n,m;t)=2F,;(n+m;t)—4>, >, Ko(n,n+2p+1;t)

— p=0g9g=1

_ 1 b(zt) ., _

FlMO= o0 Feamn® 07 39 X[F1(2(n+p+0)+ LiFo(n+m+2q;t)

and the integral in Eq(38) is performed along the right TFo(2(n+p+a)+1HF(ntm+20,0)].
portion of the unit circlgthis is indicated by the indeR). In (42
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By direct substitution one can verify that E@1l) is solved by

672W

SK(n,m;t)= sinh(2w) <

B(n,m;t)+c,

Hence with the help of Eq925), (26), (28), and (40) we
obtain the representation

sinh(2w)e~2W(n—¢+1)

tequ(n,)=B(n.n+ 10+ cost2w(n—¢)]

X B_(n,n+1+2p;t)e2ip"*2"w. (44)
p=0

To find the final expression fay,(n,t), we have to ex-
pressB(n,m;t) explicitly in terms of the perturbation func-

b . eas(z)ez"”‘“ 6 =
—=ia(z,t)b+2i

o(n,m;t E B(n,n+2p—1;t)z; 2P,

[}

(43

tion R,. First, we notice that within the limit of the desired
accuracya(z) in Eq. (38) can be replaced bg(z) defined
in Eq. (28). Furthermore, we have

1
TO(n;2)= —TY(n;2)+0(e).

a2) 49

Then, taking into account the explicit form of the Jost func-
tion (273, we can reduce Ed20) to

Z2n+1g=2i6(n=0)+iv

ot

—cost2w(n—¢+1)]H{z%e % %cosh2w(n—¢—1)]—

(22—7%)% <. costi2w(n—¢+1)]cosh2w(n—¢{—1)]

{(R,+iR!){z%e % %cosh2w(n—¢)]

cosh2w(n—¢)]}—sinkP(2w) (R, —iR")}. (46)

This equation can readily be solved for Via Eqgs.(38) and(42), one arrives at an explicit form of the first order correction

(not shown here because of its rather cumbersome)form

IIl. INTERACTION OF A SOLITON
WITH NONDISSIPATIVE IMPURITIES

We have now assembled all necessary machinery to consider the interaction of a soliton with point impurities. Let us start
with the case of a single nondissipative impuritys =1 placed at the site=0. In this caseR,(t)=—

equations of the adiabatic approximation reduce to

ikdnon, and the

dw
H=0, (47)
do e tani 2w{]
dat 2 3 ksintf(2w) cosh2w(1—{¢)]cosh2w(1+¢)]’ (48)
%=—Msir[2(l“+6)], (49
dv sinh(2w)
at =y+2cosh2w)cog 2(I" + 0)]+2—smf{2w)S|r{2(F+ 0)]— > cosr(2w§)cosr[2w(1 D) Jcoshi2w(1+ )]
x{2coshi2w(1— )]+ (1—¢)sinh(2w)sinh(2w{)}. (50

As expected, evolutions of the parametavs,Z, 6, are not regarded as collective coordinates of the so)itdvote that
coupled to the evolution of the phase and v is merely Eq. (47) is a consequence of the conservation of the norm
slaved to the dynamics of these parameters. Therefore weee Eq(52) below].

only have to deal with Eq948) and(49) describing evolu- Before going into details, we point out that, when
tions of the angle parametefisand the centef of the soliton R/ =0, as in the case discussed above, the perturbed system
(according to the terminology adopted in Sec. Il, they can bestlll has an integral of motion3,15|
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* sinh(2w)
A= > In(1+]g4?), (51 (= 5w cod2nt+20)+{y, (57
n=—cw YW
which can be viewed as the norm of the Syst(d[h and we where #=const and{l is a constant related to the initial
have position of the soliton(lt is interesting to mention here that
a dark soliton of the AL model also undergoes periodic mo-
w tions in a linear field 14].)
2 IN(1+]|gq(n,t)[2) = 4w. (52) Following the general ideas of multiscale expansisee,
n=—w e.g., Ref[13)), for the perturbed case we regatdnd{; as
) functions of the slow time. Differentiating E¢57) with re-
Another quantity, spect tot and taking into account the fact that the temporal
dependence of is governed by Eq(48), we arrive at the
< relation,
C:n_Eoo An-10n, (53

¢y sin(2yt+26)

which is an integral of motion of the unperturbed model, dt 4yw
now evolves in time according to the relation

U2, (58)

[U(Q) is given by Eq.(56)]. Within the accepted accuracy,
O(€?), £, is evaluated explicitly. Indeed, it follows from
Egs.(49) and(58) that

oo

dC

m:ien;m (An—1Rn+Ry-10p)- (54
d U@ 59
A. Interaction of an AL soliton with a point impurity dZ  4ysinh2w)’
If y=I"=0, the system under consideration reduces to th?—lence
AL model. This situation was studied in R¢fl5]. We de-
scribe it from the viewpoint of the IST perturbation theory
below. g - _ U(g) (0) (60)
It follows from Egs.(48) and(49) that in leading order the 1 4ysinh(2w)  *1
collective coordinate of the soliton solves the Newton equa-
tion where {”) is a constant determined through initial condi-
tions.
d2¢ Since the motion is quasiperiodic it is natural to analyze
—=—00926,)U’({), 55 the shift of the center of the soliton oscillations averaged
a2 0 '

over one periodl = 7/y of the rapid motion. The shift is
whereU’ (¢)=dU(¢)/d¢, the “potential” U(¢) is given by ~ defined by

sinh(2w) sintP(2w) AZ={(t+T)= (1) (61)
=eK——F—— + SosR 2w’ (56) o ) )
2w coslf(2w?) An explicit expression forA{ results directly from Eq.
and 6, is the initial value of the phase. (49),
B. Interaction of a soliton with an impurity Al=-— ZSinHZW)sir[QQ(H—T)— 0(t)]cog 2yt + 6(t+T)
in the presence of a constant field w
The system of Eqg48) and(49) has two time scales: the +6(t)]. (62

rapid, conventional time¢ defines the change of, and a

slow time et is related to the variation of the angle variable Then from Eq.(48) we find that the change af(t) during

6. We exploit this fact below in the treatment of the per- one period is of the order of?. HenceA/=0(€?). For
turbed soliton dynamics in the presence of a constant fieldimilar arguments we can show that the change of the period
y=const andl’= yt (without loss of generality;y will be is also of ordelO(€?).

assumed to be positiyeln the unperturbed case, i.e+=0, Itis not difficult to calculate the variation of the amplitude
the motion of a soliton is periodic and is described by theof the oscillation. The change df during a half-period is
solution of Eq.(49) [5,6], given by

_ ke, cosh 2W( £ min— 1) 1€0SH 2W( £ mint 1) 1COSH(2W{ may)
A= gy M o0sH 2W( L 1) 1COSH 2W( Lt 1) JCOSR(2WL )

(63
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where

{max {max
Agl/zzf dgl:f
Lmi 14

gmax
_ dg_ gunperturbe)J ) (64)

Cmin

where {jn= {1~ sINh(2W)/(2W), {max= {1+ sinh(I)/(2yw)

are the minimal and maximal values of the unperturbed soli-
ton trajectory, respectively. It is a direct consequence of this

result thatA ¢;,,>0 if k{;>0 andA{,,,<0 if k;<0.
A striking property of Eqs(48) and(49) of the adiabatic

approximation is that they allow for a trapped soliton solu-
tion. By trapping, we mean mathematically that the right-

hand side of Eq(49) vanishes. This condition has two con-
sequences(i) {={y=const, and(ii) §=—1'(t). [Here we
temporarily return to the general case in whiglis an arbi-
trary function of time] It follows from Eq. (48) that these
two conditions are compatible only whdni(t)= yt, y=

const. Hence solitons cannot be trapped, in general, by th
impurity if the external field depends on time. However, for

a nonzero constang, trapping can take place. Furthermore,

we note that, in contrast to the case considered in the prev

ous subsection, now the positidiy of the trapped soliton
does not coincide with the position of the point impurity.
Indeed, it is defined by the relation,

U’ (£o) = —4ysinh(2w),

which follows from Egs.(48), (56) and the above require-
ment (ii).

To examine the stability of a soliton placedZtwe rep-
resent/=({y+ & with |€|<|Z,| and deduce from Eqg48)
and(49) an equation fo’

¢ 1,
a2zt an Y oé=0.

(65)

(66)

It can immediately be seen from E@6) that the position
{o is stable only ifU"({y)>0. This enables us to find a
threshold valuesy, above which trapping occurs. Obviously,
such a threshold correspondsUé({) =0, where(, is con-
sidered as a function of determined by65). Direct calcu-
lation yields

_ Y [1+ 2coshi4w) + 5+ 4 costidw)]%?
 2sinkf(2w) J5+4costiaw)—1 ,

(67)

and the value of, turns out to be the same for both the
attractive and the repulsive impurities. Fox ey, there is no
trapping for eitheic=1 or k= — 1. But the trapping scenario
is different for these two cases. For — 1, the trap position

V. V. KONOTOP et al.
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FIG. 1. Trajectories of a solitofEg. (68)] with w=0.5, #=0
Qteractlng with an impurityex 8, localized at{=0 in the pres-
ence of a ramp field/,=0.0. Thick line: ex=—0.1. For com-
parison, thin line:ex=0, i.e., the unperturbed case. Dotted lines
’ indicate the positions of the turning points of the trajectori&ze
text for details)

[dm-1(D], |dm(t)], and|gy.1(t)], of the moduli, then inter-
polate parabolically these three points to find the position of
the maximum. The implementation of the interpolation en-
ables us to follow acontinuouschange(not limited to the
lattice spacing of the location{ of the soliton despite the
fact that the dynamical systeifl) is a lattice model. We
summarize our numerical simulation results as follows:

(a) For the case of a single site impurity withc=—0.1
localized atn=0 in addition to a linear potential &1 with
v=0.015, a soliton,

qo(n,t)=sinh(2w)seci2w(n—¢)]e 2/n=H+iv - (gg)
initially localized at{=0 with w=0.5, and6=0 evolves
with a perturbed trajectory. Figure 1 shows the trajectory
(thick line) of the soliton which is the locus of the interpo-
lated maximum of|g,(t)| compared with the unperturbed
trajectory (thin line). It clearly shows that the amplitude of
the oscillatory motion is modified by the presence of the
impurity, as is the oscillation frequency. We define the local-
ization lengthA as the distance between the left turning
points and the right turning points of an oscillatory trajectory
(see Fig. 1 This is twice the amplitude of the oscillatory
motion. We numerically measured thabA=A,¢ymed
—Aunperturbed™ 1.30 for ex=—-0.1, AA=—-1.64 for ex
=0.1, respectively. From Ed63) the theoretical estimates
for the correction AA of the localization length are
A= *1.46 forex=£0.1. Therefore the theoretical esti-

{o—0 ase—» (i.e., the center of the soliton tends to the mates and the numerical results agree with each other rather

location of the impurity. In general{ye (0,{o), Where
Lo satisfies both Eq65) andU”({, ) =0. In contrast, for
k=1, the trap positiorfy= ¢y, as e increases froney,.

We have performed numerical simulations for the full dy-

namical systentl) of sufficiently large lattice sizes to avoid

well (with a relative error of about 10%). We note that, in
order to measure this small correction in the change of the
amplitude, the impurity should be placed around the turning
points since the correctiof{,,, decays exponentially with a
decay width of the order of 1/(2) as the distance increases

any boundary effects. In numerical simulations, we used detween the impurity and one of the turning points.

Simpson interpolation scheme to find the location of the

maximum of the modulu$g,(t)| as a function of timet.

(b) Next we discuss the phenomenon of trapping a soliton
by an impurity in the presence of a spatially linear potential.

More specifically, we first locate three greatest valuesFirst, we note that Eq65) in general has two solutions for
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FIG. 2. Untrapped soliton vs soliton pinned by an impurity lo-  FIG. 3. Trajectory of a soliton withw=0.5, 6=0, initially
cated atz=0 in the presence df,,=0.0%. Thick line shows the placed at' =156, pinned by the impurity 0.2% , after a number of
trajectory of a trapped soliton executing small amplitude oscilla-the usual large amplitude oscillations in the presence of the linear
tions, hereex=—0.1036. Thin line is the trajectory of an un- potentialV,=0.03. The dashed line indicates the location of the
trapped soliton,ex=—0.1010. The soliton is initially located at impurity.

{=—0.8328 withw=0.5, #=0.

IV. INTERACTION OF A SOLITON
{o, and a soliton should be trapped at one of thés at WITH DISSIPATIVE IMPURITIES
which U”(Z)>0. This is indeed the situation we observed
in simulations. For example, farx=0.14, solitong68) ini-
tially localized around{=0.5~1 are trapped af=1.37.
Note that for the above parameters, the two solutions fo
o of Eq. (65 are ¢{M=0.4222 at whichU"(£,)<0, and
{$2)=1.353, at whichJ"(£,)>0, respectively. The theoreti- dw ex sinkA(2w)
cal estimate for the trap position again is in good agreement =15 '
with the numerical simﬁlgtion. Thegrelative e?ror is Igess than dt 2 cosh2w(1=g)]cosiaw(l+{)]
3%. Second, we performed simulations to verify the theo- do
retical estimate of the trap threshold7). For w=0.5 and =
y=0.015, the theoretical estimate &°>=0.103 54 with dt
{o=*0.8328 at whiclJ"({,) =0. In the simulations, a soli- .
ton (68) was initially centered at {,=0.8328 or d¢_ sinh2w)
{o=—0.8328. For sufficiently strong impurities, it executed dt
a small oscillatory motion(see Fig. 2. Numerically, we .
found there was a thresholef;?=0.1066 below which no +iK sint¥(2w){ '
trapping was observed fof,=0.8328. The threshold for 2w costi2w(1—¢)]coshi2w(1+ )]
{o=—0.8328 was numerically found to bef*=0.1013.
The thresholdse,® and e, are within 3% relative error. = 1 2cosii2w)cod 2(T + 6)]
Thus the theoretical estimate and the numerical results for dt
the threshold are in excellent agreement. 0

(c) Finally, we point out that the trapping phenomenon is, +2—sinh(2w)sinN 2(T" + 6)]
in general, complicated. When a soliton will be trapped de- w
pends not only on the strength of the impurity, but also on its P Sink(2w) ¢
location, and the radiation induced by soliton interaction —iex— . (72
with the impurity. For example, in Fig. 3, we observe that a w cosh2w(1—¢)]cosh2w(1+{)]
soliton of w=0.5, 6=0, initially placed at{=156 collides
with the impurity 0.2&, o three times, accompanied by the
emission of radiatiorinot shown, then it is finally trapped
near the impurity at the fourth encounter. In numerical simu-" "~
lations, we recorded that the number of encounters before tHé ™~
final trapping may not be monotonically increasing with the

In this section, we focus on the soliton dynamics affected
by the perturbatiorR,=—i«é, ¢q, with an imaginary«:
(= *+1i, corresponding to a dissipative impurity. The equa-
tions of the adiabatic approximation now take the form

(69

0, (70)

sif2(I'+ 6)]

(71)

As in Sec. lll, the dynamics of is slaved to other pa-
rameters, and we confine ourselves to E§8) and(71) in
the following. We notice that in terms of new variables
2w¢, andv = 2w they can be rewritten as

dv sinkfv

decrease of the impurity strength. For instance, with the = , (73
above set of parameters, we have a trapped soliton after eight dt cosh{v —u)coshv +u)
encounters forke=0.25 and after six encounters for q
= i i i i u
ke=0.27 in contrast to the case shown in Fig. 3 which has —~ = 2sintysiny, (74)

four encounters foke=0.26. dt
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FIG. 4. Change of the amplitude parametefor solitons of the FIG. 5. Trajectories of a soliton wittv=0.4375, #=0.85 ini-

initial profile [Eq. (68)] with 6=0.85, /=0 att=0, interacting with  tially localized at {=0 interacting with a dissipative impurity
a dissipative impurityced, o, k=i, e=0.1. (i) in the absence of a &€y in the presence of a linear potentig}=0.14n. Thick line:
static ramp, i.e.,y=0, dashed line: the theoretical estim@feg.  «€=0.1. For comparison, thin linexe=0, i.e., the impurity-free
(76)]; crosses: numerical simulation resuli$) in the presence of a Case.
static ramp,y=0.07, solid line: from the theoretical estimdf#8);
plus: numerical simulation resultéSee text for detail$.

constitutes the excess aff in numerical measurements.

whereA=—iex is a small real parameter ang=2I"+260 Bearing this in mind, we display in Fig. 4 the comparison
(here we have taken into account the fact thais a con- between the theoretical estim&f#6) and the results of nu-
stany. merical measurements. The discrepancy between theory and
simulation ranges from 8% of relative errors for=0.25 to
A. Interaction of an AL soliton with a dissipative impurity 1% forw=0.75. This constitutes strong agreement.

If y=I"=0, theny=260=const and Eqgs(73) and (74)

B. Interaction of a soliton with the dissipative impurity
reduce to

in the presence of the constant field

dv A sinty . Here we are concerned with the case of a static ramp field,
du  2siny coshv —u)cosiv +u) " (79 i.e., y(t)=1v, a constant. Since an unperturbed soliton ex-
ecutes periodic oscillations, we look for the averaged change
A qualitative analysis of this equation gives rise to the fol-of the characteristics during one period, as discussed above.
lowing picture: The function vsu is continuously decreas- Starting with the unperturbed solution,
ing (increasing if Asiny<O (Asiny>0). At infinity 1
(u— £x) v tends to a constant. This means that the inter- T
action of a soliton with the impurity leads to decreasiig U= sinfocos2yt+26)+ U, 7
creasing of the amplitude parameter of the soliton if
k=—i (k=i). If we assume that the soliton comes from Whereuy,=2wy{,, working within the first order ok, and
[=—o at t=—= (consequently, sip<0), then the total taking into account the fact that changes slowly, we can

change of the amplitude parametsr i.e., Aw=w(t=«) represent the variaton of the parametev,

—w(t=—) can be estimated as Avg=vo(t+T)—wvg(t) during one period in the form of an
integral,
A 2i i 76
W= 2l ek G 2c0shan (76 dt

Av0=2)\sinf‘?vf (79

t+ cosh2v)+cosh2u)’
Here we have taken into account the fact thais a small

parameter and hence the chanpe is small(i.e., it is as- where one should substitute E(.7) into u, and regardv
sumed thatAw|<w). Evidently, Eq.(76) remains valid also  andug as constants. The integral in Eg8) can be evaluated
for a soliton moving from+ toward the impurity(that is, trivially in the case of small, namely,v<1, andv <y, to
when sirny>0). Notice that the total norm of the system com-yield Av=ATv? This estimate is replaced by
prising only one soliton is w [see Eq.(52)]. Using this Av=ATtanlfv in the limit of a strong fieldy>sintv. To
relation and assuming that the perturbed soliton retains theerify the theoretical estimaté78), we numerically inte-
solitonic functional form(68), we can numerically estimate grated Eq.(78) and used the procedure mentioned above to
the parametew. Of course, this procedure should producecarry out measurements fdrw in one oscillation of a soli-

an overestimate ofv because the total norm of the systemton. The solid line shown in Fig. 4 is the result from the
after the soliton passes the impurity consists of contributionsumerical integration of E¢(78) (note thatAw = Avg/2,
from the soliton and the radiation it generates. The radiatiormnd uy=2wy{,=0 for the case showncompared with the



53 INTERACTION OF A SOLITON WITH POINT IMPURITIES ... 6485

numerical measuremen{pluses. As expected, there is an adiabatic approximation and higher order corrections to this
overestimate oAw from the simulation. Clearly, the overall approximation for single-soliton dynamics. Using this for-
agreement is excellent, with relative errors ranging from lessnulation, we have discussed in detail the motion of a soliton
than 9% forw~0.25 to less than 0.2% far~0.75. Figure interacting with a point impurity, either conservative or dis-
5 shows an example of the trajectories of solitons interactingipative, in the presence of a spatially linear potential. We
with a dissipative impurity. It exhibits a qualitatively differ- have predicted that there are two types of dynamical local-
ent behavior than the conservative céske Fig. 1). The cu-  ization for the nondissipative impurity case, one being the
mulative increase of the oscillation amplitude observed inusual dynamical localization, qualitatively the same as that in
the figure is a result of the incremental increase of the amthe absence of the impurity, the other being the pinning of a
plitude parametew (for k=i) since qualitatively the oscil- soliton by an impurity of sufficient strength. These predic-
lation amplitude is proportional to sinhf/w [see Eq(57)].  tions are confirmed by direct numerical simulations per-
formed with the full dynamical systeiti). Various theoreti-
V. CONCLUSIONS cal estimates made within the adiabatic approximation are

) ] also shown to be in excellent agreement with numerical re-
In this work, we have developed a comprehensive perturgis.

bation theory for the inhomogeneous, discrete one-
dimensional nonlinear Schdmger equatiorf1) based on the Work at Los Alamos is performed under the auspices of
inverse scattering transform. We have also discussed ththe U.S. D.O.E.
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